Special Education in Brazil: from exclusion to inclusion

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inclusion-exclusion meets exclusion

When evaluating the inclusion-exclusion expansion N0 −N(1) −N(2) − · · ·+N(1, 2) +N(1, 3) + · · · many of the terms N(· · ·) may turn out to be zero, and hence should be discarded beforehand. Often this can be done.

متن کامل

Web-Based Higher Education: The Inclusion/Exclusion Paradox

Increasingly, education is delivered through computers and the internet. This article highlights that while such development is beneficial for some students with functional impairments, it might be excluding others if insufficient attention is paid to accessibility. Both the electronic learning environment (Blackboard, WebCT and the like) as well as the content author need to design for accessi...

متن کامل

The Inclusion-Exclusion Principle for IF-States

Applying two definitions of the union of IF-events, P. Grzegorzewski gave two generalizations of the inclusion-exclusion principle for IF-events.In this paper we prove an inclusion-exclusion principle for IF-states based on a method which can also be used to prove Grzegorzewski's inclusion-exclusion principle for probabilities on IF-events.Finally, we give some applications of this principle by...

متن کامل

Quick Inclusion-Exclusion

Many data mining algorithms make use of the well-known Inclusion-Exclusion principle. As a consequence, using this principle efficiently is crucial for the success of all these algorithms. Especially in the context of condensed representations, such as NDI, and in computing interesting measures, a quick inclusion-exclusion algorithm can be crucial for the performance. In this paper, we give an ...

متن کامل

Symmetric Inclusion-Exclusion

One form of the inclusion-exclusion principle asserts that if A and B are functions of finite sets then the formulas A(S) = ∑ T⊆S B(T ) and B(S) = ∑ T⊆S(−1) |S|−|T A(T ) are equivalent. If we replace B(S) by (−1)B(S) then these formulas take on the symmetric form A(S) = ∑ T⊆S (−1) B(T ) B(S) = ∑ T⊆S (−1) A(T ). which we call symmetric inclusion-exclusion. We study instances of symmetric inclusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ETD - Educação Temática Digital

سال: 2009

ISSN: 1676-2592

DOI: 10.20396/etd.v1i3.548